
INTEGRATED CIRCUITS

Preliminary specification File under Integrated Circuits, IC02 May 1994

TDA4780

RGB video processor with automatic cut-off control and gamma adjust

FEATURES

- Gamma adjust
- Dynamic black control (adaptive black)
- · All input signals clamped on black-levels
- Automatic cut-off control, alternative: output clamping on fixed levels
- Three adjustable reference voltage levels via l²C-bus for automatic cut-off control
- Luminance/colour difference interface
- Two luminance input levels allowed
- Two RGB interfaces controlled by either fast switches or by I²C-bus
- Two peak drive limiters, selection via I²C-bus
- Blue stretch, selection via I²C-bus
- Luminance output for scan velocity modulation (SCAVEM)
- Extra luminance output; same pin can be used as hue control output e.g. for the TDA4650 and TDA4655
- Non standard operations like 50 Hz/32 kHz are also possible
- Either 2 or 3 level sandcastle pulse applicable
- High bandwidth for 32 kHz application

- White point adjusts via I²C-bus
- Average beam current and improved peak drive limiting
- Two switch-on delays to prevent discolouration during start-up
- All functions and features programmable via I²C-bus
- PAL/SECAM or NTSC matrix selection.

GENERAL DESCRIPTION

The TDA4780 is a monolithic integrated circuit with a luminance and a colour difference interface for video processing in TV receivers. Its primary function is to process the luminance and colour difference signals from a colour decoder which is equipped e.g. with the multistandard decoder TDA4655 or TDA9160 plus delay line TDA4661 or TDA4665 and the Picture Signal Improvement (PSI) IC TDA467x or from a Feature Module. *(continued)*

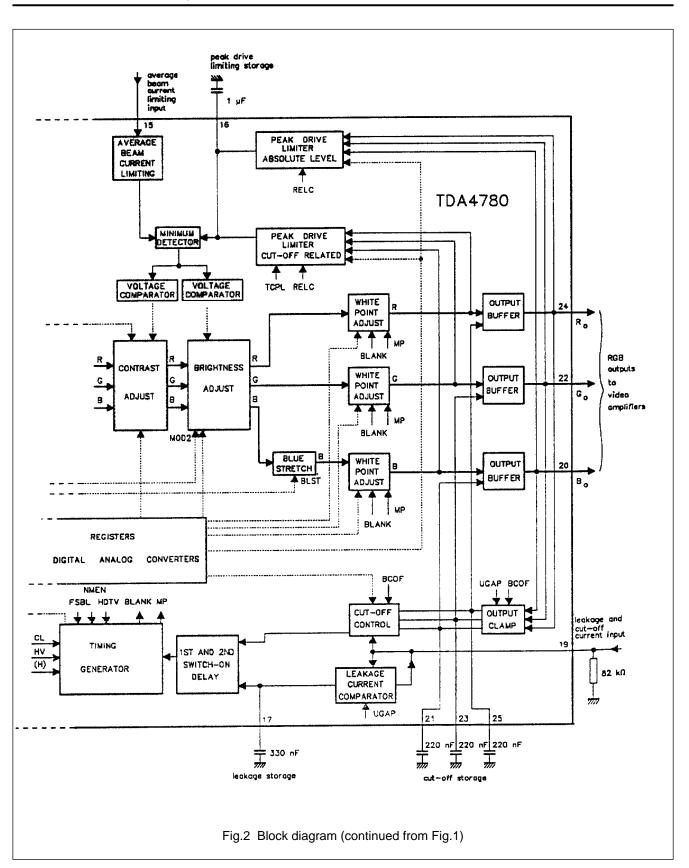
SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage (pin 5)	7.2	8.0	8.8	V
lp	supply current (pin 5)	80	100	120	mA
V _{8(p-p)}	luminance input (peak-to-peak value) (C)VBS	_	0.45/ 1.43	_	V
V _{6(p-p)}	–(B–Y) input (peak-to-peak value)	-	1.33	_	V
V _{7(p-p)}	-(R-Y) input (peak-to-peak value)	-	1.05	_	V
V ₁₄	three-level sandcastle pulse				
	H+V	-	2.5	_	V
	н	-	4.5	_	V
	BK	-	8.0	_	V
	two-level sandcastle pulse				
	H+V	-	2.5	_	V
	BK	-	4.5	_	V
Vi	RGB input signals at pins 2, 3, 4, 10, 11 and 12 (black-to-white value)	-	0.7	_	V
V _{O(p-p)}	RGB output at pins 24, 22 and 20 (black-to-white value)	-	2.0	_	V
T _{amb}	operating ambient temperature	-20	_	+70	°C

QUICK REFERENCE DATA

TDA4780

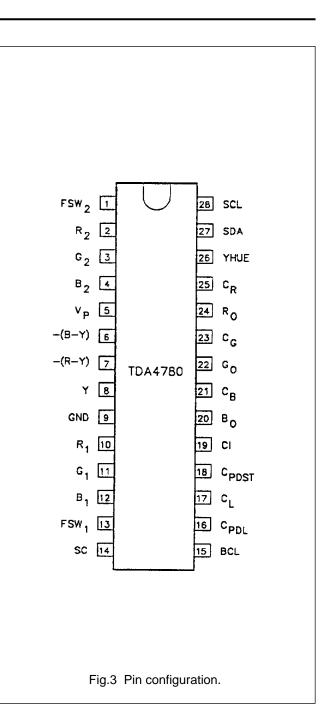
RGB video processor with automatic cut-off control and gamma adjust

ORDERING INFORMATION


EXTENDED				
TYPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE
TDA4780	28	DIL	plastic	SOT117 ⁽¹⁾

Note

1. SOT117-1; 1996 December 9.


FSW1 FSW2 v 8 peak dork YHUE storage <u>////</u> Y--output / hue odjust output 🚢 200 µF μF 1 7/1 13 18 26 9 5 1.1 Ь 10 nF YEXH 10 10 nF SUPPLY 10 nF 12 INPUT HUE BANDGAP REFERENCE 10 nF **₩** UGAP 10 nf 10 nF SELECTOR Y gamma BL Y-MATRIX Y BL ADAPTIVE GAMMA PAL/SECAM BLACK 10 nl COLOUR SATURATION 10 nl G ADBL NTSC DIFFERENCE nF R R 0.45 MATRIX ADJUST MATRIX G-Y B NMEN **** DELOF HOTY BOOF F SON1 F SDIST F SON2 F SDIS2 SC5 FSBL YHI REGISTERS B DATA 6 DATA CONTROL REGISTERS DIGITAL ANALOG CONVERTERS UGAP I²C - BUS v BREN SC5 TDA4780 RECEIVER SANDCASTLE DETECTOR DELOF (Hì 28 27 14 sondcostle input A SDA **≜** sc SCL 🛦 1²C-bus Fig.1 Block diagram (continued in Fig.2)

May 1994

PINNING

SYMBOL	PIN	DESCRIPTION
FSW ₂	1	fast switch 2 input
R ₂	2	red input 2
G ₂	3	green input 2
B ₂	4	blue input 2
V _P	5	supply voltage
–(B–Y)	6	colour difference input –(B–Y)
–(R–Y)	7	colour difference input –(R–Y)
Y	8	luminance input
GND	9	ground
R ₁	10	red input 1
G ₁	11	green input 1
B ₁	12	blue input 1
FSW ₁	13	fast switch 1 input
SC	14	sandcastle pulse input
BCL	15	average beam current limiting input
C _{PDL}	16	storage capacitor for peak limiting
CL	17	storage capacitor for leakage current compensation
C _{PDST}	18	storage capacitor for peak dark
CI	19	cut-off measurement input
B _O	20	blue output
C _B	21	blue cut-off storage capacitor
G _O	22	green output
C _G	23	green cut-off storage capacitor
R _O	24	red output
C _R	25	red cut-off storage capacitor
YHUE	26	Y-output/hue adjust output
SDA	27	I ² C-bus serial data
		input/acknowledge output
SCL	28	I ² C-bus serial clock input

GENERAL DESCRIPTION

(continued)

The required input signals are:

- · luminance and negative colour difference signals
- 2- or 3-level sandcastle pulse for internal timing pulse generation
- I²C-bus data and clock signals

Two sets of analog RGB colour signals can also be inserted, e.g. one from a peritelevision connector (SCART plug) and the other one from an on-screen display (OSD) generator. The TDA4780 has I²C-bus control of all parameters and functions with automatic cut-off control of the picture tube cathode currents. It provides RGB output signals for the video output stages. In clamped output mode it can also be used as an RGB source.

The main differences to the sister type TDA4680 are:

- additional features, namely gamma adjust, adaptive black, blue stretch and two different peak drive limiters.
- the measurement lines are triggered by the trailing edge of the vertical component of the sandcastle pulse.
- I²C-bus receiver only. Automatic white level control is not provided; the white levels are determined directly by the I²C-bus data.
- the TDA4780 is pin compatible (except pin 18) to the TDA4680. The slave address via the l²C-bus can be used for both ICs; where a function is not included in the TDA4680 then the l²C-bus command is not executed. Special commands (except control bit FSWL) for the TDA4680 will be ignored by the TDA4780.

FUNCTIONAL DESCRIPTION

Signal input stages

The TDA4780 contains 3 sets of input signal stages for: a) Luminance/colour-difference signals: (Y: 0.45 V(p-p) VBS or 1.43 V(p-p) VBS, selectable via l^2 C-bus, -(R-Y): 1.05 V(p-p); -(B-Y): 1.33 V(p-p)). The capacitively coupled signals are matrixed to RGB signals by either a PAL/SECAM or NTSC matrix (selected via l^2 C-bus). b) (RGB)₁ signals (0.7 V(p-p) VB), capacitively coupled (e.g. from external source).

c) (RGB)₂ signals (0.7 V(p-p) VB), capacitively coupled (e.g. videotext, OSD).

All input signals are clamped in order to have the same black levels at the signal switch input. Displayed signals must be synchronous with the sandcastle pulse.

Signal switches

Both fast signal switches can be operated by switching pins (e.g. SCART facilities) or set via the l^2 C-bus. By switch 1 the Y-CD signals or the (RGB)₁ signals can be selected, by switch 2 the above selected signals or the (RGB)₂ signals are enabled. During the vertical and horizontal blanking time an artificial black level equal to the clamped black level is inserted in order to clip off the sync pulse of the luminance signal and to suppress hum during the cut-off measurement time and eliminate noise during these intervals.

Saturation, gamma, contrast and brightness adjust

Saturation, contrast and brightness adjusts are adjusted via the I²C-bus and act on Y, CD as well as on RGB input signals. Gamma acts on the luminance content of the input signals.

Gamma adjust

The gamma adjust stage has a non-linear transmission characteristic according to the formula $y = x^{gamma}$, where x represents the input and y the output signal. If gamma is smaller than unity, the lower parts of the signal are amplified with higher gain.

Adaptive black (ADBL)

The adaptive black stage detects the lowest voltage of the luminance component of the internal RGB signals during the scanning time and shifts it to the nominal black level. In order to keep the nominal white level the contrast is increased simultaneously.

Blue stretch (BLST)

The blue stretch channel gets additional amplification if the blue signal is greater than 80% of the nominal signal amplitude. In that case the white point is shifted towards higher colour temperature so that white parts of a picture seem to be brighter.

Measurement pulse and blanking stage

During the vertical and horizontal blanking time and the measurement period the signals are blanked to an ultra black level, so the leakage current of the picture tube can be measured and automatically compensated for. During the cut-off measurement lines (one line period for each R, G or B) the output signal levels are at cut-off measurement level.

The vertical blanking period is timed by the sandcastle pulse. The measurement pulses (leakage, R, G and B) are triggered by the negative going edge of the vertical pulse of the sandcastle pulse and start after the following horizontal pulse.

The IC is prepared for $2f_H$ (32 kHz) application.

Output amplifier and white adjust potentiometer

The RGB signals are amplified to nominal 2 V(p-p), the DC-levels are shifted according to cut-off control. The nominal signal amplitude can be varied by $\pm 50\%$ by the white point adjustment via the l²C-bus (individually for RGB respect).

Automatic cut-off control

During leakage measurement time the leakage current is compensated in order to get a reference voltage at the cut-off measurement info pin.

This compensation value is stored in an external capacitor. During cut-off current measurement times for the R, G and B channels, the voltage at this pin is compared with the reference voltage, which is individually adjustable via I²C-bus for each colour channel. The so derived control voltages are stored in the external feedback capacitors. Shift stages add these voltages to the corresponding output signals.

The automatic cut-off control may be disabled via the I^2C -bus. In this mode the output voltage is clamped to 2.5 V. Clamping periods are the same as the cut-off measurement periods.

Signal limiting

The TDA4780 provides two kinds of signal limiting. First, an average beam limiting, that reduces signal level if a certain average is exceeded. Second, a peak drive limiting, that is activated if one of the RGB signals even shortly exceeds a via I^2C -bus adjusted threshold. The latter can be either referred to the cut-off measurement level of the outputs or to ground.

When signal limiting occurs, contrast is reduced, and at minimum contrast brightness is reduced additionally.

Sandcastle decoder and timer

A 3-level detector separates the sandcastle pulse into combined line and field pulses, line pulses, and clamping pulses. The timer contains a line counter and controls the cut-off control measurement. Application with a 2-level 5 V sandcastle pulse is possible.

Switch on delay circuit

After switch on all signals are blanked and a warm up test pulse is fed to the outputs during the cut-off measurement lines. If the voltage at the cut-off measurement input exceeds an internal level the cut-off control is enabled but the signal remains still blanked. The signal blanking is finished when the cut-off control has stabilized. In case of output clamping, the cut-off control is disabled and the switch on procedure will be skipped.

Y output and hue adjust

The TDA4780 contains a D/A converter for hue adjust. The analog information can be fed, e.g. to the multistandard decoder TDA4650 or TDA4655. This output pin may be switched to a Y output signal, which can be used for scan velocity modulation (SCAVEM). The Y output is the Y input signal or the matrixed (RGB) input signal according to the switch position of fast switch.

I²C-bus

The TDA4780 contains an $\ensuremath{I^2C}\xspace$ bus receiver for control function.

ESD protection

Pins are provided with protection diodes against ground and supply voltage (see pin description).

I²C-bus input pins do not shunt the I²C-bus signals in case of missing supply voltage.

EMC

Pins are protected against electromagnetic radiation.

Preliminary specification

RGB video processor with automatic cut-off control and gamma adjust

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
T _{stg}	storage temperature	-20	+150	°C
T _{amb}	operating ambient temperature	-20	+70	°C
P _{tot}	total power dissipation	-	1200	mW
$V_{5-9} = V_P$	supply voltage	-0.1	+9.0	V
V _{10,11,12-9}	(RGB) ₁ inputs	-0.1	VP	V
V _{2,3,4-9}	(RGB) ₂ inputs	-0.1	VP	V
V _{8,7,6-9}	Y, CD-inputs	-0.1	V _P	V
V _{13,1-9}	switch I, II	-0.1	V _P	V
V _{25,23,21,17-9}	black level, leakage storage	-0.1	V _P	V
V ₁₄₋₉	sandcastle	-0.7	V _P + 5.8	V
V ₁₅₋₉	average current inf.	-0.7	V _P + 0.7	V
V ₁₆₋₉	peak drive storage	-0.1	V _P	V
V _{27,28-9}	l ² C-bus	-0.1	V _P	V
I ₂₆	Y output / hue adjust	-8	_	mA
V ₁₈₋₉	peak dark storage	-0.1	V _P	V
V ₁₉₋₉	cut-off control input	-0.7	V _P + 0.7	V
I _{24,22,20}	output peak	-20	_	mA
I _{24,22,20}	output average	-10	_	mA
ESD	electrostatic handling (note 1) for all pins	-500	+500	V

Note to the Limiting Values

1. Charge device model class A: discharging a 200 pF capacitor through a 0 Ω series resistor.

THERMAL RESISTANCE

SYMBOL	PARAMETER	THERMAL RESISTANCE
R _{th j-a}	from junction to ambient in free air	47 K/W

QUALITY SPECIFICATION

URV-4-2-59/601

CHARACTERISTICS

 T_{amb} = +25 °C; V_P = 8 V; V_{nom} : nominal signal amplitude (black-white) 2000 mV (peak-to-peak value) at output pins; gamma = 1; adaptive black inactive; brightness, contrast, saturation and white balance at nominal settings; no beam current or peak drive limiting; all voltages are related to ground (pin 9) and measured in Figs 1 and 2; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage (pin 5)		7.2	8	8.8	V
I _P	supply current (pin 5)		_	100	120	mA
	ference inputs (–(B–Y): pin 6, –(R- dation: maximum 600 Ω)	-Y): pin 7; capacitively coupled to	o a low	ohmic s	source;	
V ₆	–(B–Y) signal (peak-to-peak value)	75% colour bar signal	-	1.33	-	V
V _{6,7}	internal bias during clamping		-	4.0	-	V
I _{6,7}	DC input current between clamping pulses		-	-	0.1	μA
I _{6,7}	maximum input current during clamping		100	180	260	μA
V ₇	–(R–Y) signal (peak-to-peak value)	75% colour bar signal	-	1.05	_	V
R _{6,7}	AC input resistance		10.0	-	-	MΩ
Y input (pi	in 8; capacitively coupled to a low ol	hmic source; recommendation: n	naximu	m 600 Ω	2)	
V ₈	input signal (composite signal; VBS; peak-to-peak value)	adaption to two different signal levels via control bit YHI				
		YHI = 0	_	0.45	-	V
		YHI = 1	-	1.43	-	V
R ₈	AC input resistance		10.0	-	-	MΩ
V ₈	internal bias during clamping	YHI = 0	_	3.7	-	V
		YHI = 1	_	4.6	-	V
۱ ₈	DC input current between clamping pulses		-	-	0.1	μA
I ₈	maximum input current during clamping		100	180	260	μA
	t 1 (R ₁ : pin 10, G ₁ : pin 11, B ₁ : pin 12 dation: maximum 600 Ω; note 1)	2; capacitively coupled to a low o	hmic s	ource;		
V _{10,11,12}	input signal (peak-to-peak value)		_	0.7	-	V
R _{10,11,12}	AC input resistance		10.0	-	-	MΩ
V _{10,11,12}	internal bias during clamping		_	5.1	-	V
I _{10,11,12}	DC input current between clamping pulses		_	-	0.1	μA
I _{10,11,12}	maximum input current during clamping		100	180	260	μA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
-	t 2 (R ₂ : pin 2, G ₂ : pin 3, B ₂ : pin 4; ca idation: maximum 600 Ω; note 1)	pacitively coupled to a low ohmi	c sour	ce;		1
V _{2,3,4}	input signal (peak-to-peak value)		_	0.7	-	V
R _{2,3,4}	AC input resistance		10.0	-	_	MΩ
V _{2,3,4}	internal bias during clamping		_	5.1	-	V
I _{2,3,4}	DC input current between clamping pulses		-	-	0.1	μA
I _{2,3,4}	maximum input current during clamping		100	180	260	μA
PAL/SEC	AM and NTSC matrix (note 2; for de	modulation axis see appendix)				
PAL/SECA	M matrix	control bit NMEN = 0				
NTSC mat	rix	control bit NMEN = 1; hue posi	tion set	t on (–2)	degrees	
Fast signa	al switches and blanking (fast sign	al switch 1 (pin 13); Y, CD / R ₁ , (G ₁ ; B ₁ ;	control I	oits FSDIS	1, FSON1)
V ₁₃	voltage to select Y and CD		_	0	0.4	V
V ₁₃	voltage range to select R_1 , G_1 and B_1		0.9	1.0	5.5	V
R ₁₃	internal resistor to ground		3.3	3.8	4.8	kΩ
Crosstalk	(see Table 2)		1	I	1	ł
t _s — t _i	difference between transit times for signal switching and signal insertion		-	_	10	ns
Fast signa	al switch 2 (pin 1; Y, CD or R ₁ , G ₁ , E	$B_1 / R_2, G_2, B_2$; control bits FSD	IS2, FS	SON2)		
V ₁	voltage to select Y and CD / R_1 , G_1 and B_1		-	0	0.4	V
V ₁	voltage range to select R_2 , G_2 and B_2		0.9	1.0	5.5	V
V ₁	required minimal voltage to switch off the ADBL measurement		-	0.87	1.0	V
R ₁	internal resistor to ground	$R_1 > R_{13}$	2.8	4.2	6.0	kΩ
Crosstalk	(see Table 2)					
t _s — t _i	difference between transit times for signal switching and signal insertion		-	_	10	ns

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Adjust sta	iges (adaptive black, gamma, contra	ast, saturation, brightness and w	hite po	int adjus	t, blue stre	etch)
Adaptive b	lack (detectors inactive status due to	o action of fast switch 2 (pin 1);	see Tab	ole 1, Fig	g.9 and no	te 3)
I ₁₈	discharge current of peak dark storage capacitor	outside active measurement window	0.1	0.5	1.0	μΑ
		inside active measurement window	1.5	2.5	3.5	μA
I ₁₈	charge current of peak dark storage capacitor		-360	-300	-250	μA
	maximum level shift: Δ black level in percent of nominal signal amplitude		10	13	16	%
	difference between nominal black and adaptive black in percent of nominal signal amplitude		-3	0	+3	%
	detectors inactive time before blanking		2.3	3.1	4.0	μs
	detectors inactive time after blanking		2.3	2.5	3.4	μs
Gamma ac Acts on int Resolution	ernal Y signal; Y matrix see Y output	t; I ² C-bus controlled potentiome	ter (sut	baddress	s 0B)	
	range of gamma					
	minimum (3F _{HEX})		-	0.7	-	-
	maximum (00 _{HEX})		-	1.0	_	-
	maximum gain at minimum gamma	near nominal black	5	6	7	dB
	adjust GB signals; Y matrix see Y output; I ² 1.5% of maximum saturation	C-bus controlled potentiometers	s (subad	ddress 0	1)	
	I ² C-bus data for nominal saturation		1F	20	21	HEX
	maximum saturation	I ² C-bus data 3F _{HEX;} measured at 100 kHz; relative to nominal saturation	4.9	5.5	6.1	dB
	minimum saturation	I ² C-bus data 00 _{HEX;} measured at 100 kHz; relative to typical value of maximum saturation	-	_	-50	dB

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	djust GB signals; I ² C-bus controlled poten 1.5% of maximum contrast	tiometers (subaddress 02)		1	1	1
	I ² C-bus data for nominal contrast		20	22	24	HEX
	maximum contrast	I ² C-bus data 3F _{HEX;} limiters inactive; relative to nominal contrast	-	4.5	5.5	dB
	minimum contrast	I ² C-bus data 00 _{HEX;} relative to maximum	-28	-22	-16	dB
	GB signals; I ² C-bus controlled potent 1.5% of range; Δ black level in percent	ent of nominal signal amplitude	1	· · · · · ·	1	
	maximum brightness: Δ black level	3F _{HEX}	23	30	37	%
	nominal brightness: Δ black level	29 _{HEX}	-7	0	+7	%
	minimum brightness: Δ black level	00 _{HEX}	-58	-50	-42	%
	maximum brightness: Δ black level	$3F_{HEX}$; control bits BCOF = 1 and MOD2 = 0	23	30	37	%
	minimum brightness: Δ black level	00_{HEX} ; control bits BCOF = 1 and MOD2 = 0	-58	-50	-42	%
Blue stretc Blue stretc	h h is activated by I ² C-bus control bit l	BLST = 1 (see Fig.11)				
	increase of small signal gain	100% of nominal signal amplitude and at 1 MHz	15	20	25	%
Difference: nominal sig	s of black level steps s from channel to channel of the ration gnal amplitude (V _{nom24} , V _{nom22} , V _{nom} witching fast switches, gamma = 1, I	20) over the whole contrast, brig			,	
dV/V _{nom}	static deviation	$\begin{array}{l} dV/V_{nom} = dV_{24}/V_{nom24} - \\ dV_{22}/V_{nom22} = dV_{24}/V_{nom24} - \\ dV_{20}/V_{nom20} = dV_{22}/V_{nom22} - \\ dV_{20}/V_{nom20}; \mbox{ ripple on pin 5} \end{array}$	-1.0	_	+1.0	%
		during clamping ≤ 1 mV; note 8				

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
RGB outp	uts (output for positive RGB signals	(R: pin 24, G: pin 22, B: pin 20);	follow	ing data	without ex	ternal load)
R _{24,22,20}	differential output resistance		_	25	30	Ω
I _{24,22,20}	maximum output current		4.0	5.0	_	mA
V _{24,22,20}	minimum output voltage	note 9	_	_	0.8	V
V _{24,22,20}	maximum output voltage	$R_L \ge 2 \ k\Omega$	6.3	7.0	-	V
V _{24,22,20}	maximum signal amplitude (black-white) due to internal limits (peak-to-peak value)		3.3	_	-	V
V _{24,22,20}	nominal signal amplitude (black-white; peak-to-peak value)	at nominal white adjust; contrast and saturation setting; gamma = 1; nominal input signals	1.7	2.0	2.3	V
V _{24,22,20}	range of cut-off measurement level	note 9	1.0	_	5.0	V
V _{24,22,20}	recommended cut-off measurement level		_	3.0	_	V
Output clar	mp (RGB)			I	1	1
V _{20,22,24}	clamp voltage black level	control bit BCOF = 1	2.3	2.5	2.7	V
White pote	ntiometers					1
	I ² C-bus data for nominal settings		21	22	23	HEX
	maximum increase of AC gain	3F _{HEX}	40	50	60	%
	maximum decrease of AC gain	00 _{HEX}	40	50	60	%
Overall wh	ite point deviation					
dV/V _{nom}	$ dV/V_{nom} = dV_{24}/V_{nom24} - dV_{22}/V_{nom22} = dV_{24}/V_{nom24} - dV_{20}/V_{nom20} = dV_{22}/V_{nom22} - dV_{20}/V_{nom20} meaning of actual nominal signal see 'differences of black level step'; over whole contrast range see 'contrast adjust' $	input: $(RGB)_{1,2}$ differences from channel to channel of the ratio of the difference (signal white level cut-off measurement level) to actual nominal signal amplitude ($V_{nom 24}, V_{nom 22}, V_{nom 20}$) over the whole saturation range at nominal contrast, brightness and nominal input signals; ripple on pin 5 during clamping ≤ 1 mV; note 8	-2.0	_	+2.0	%
	y behaviour, crosstalk	the (mine 0.4, 0.0, 1, 0.0)				
Between th	he Y input (pin 8) and the RGB output				2	
	decrease in gain	1 MΩ and 20 pF load at 13 MHz	_	_	3	dB
Between th	ne colour-difference inputs (pins 7 ar	, , , ,	nd B ou	utputs (p	1	
_	decrease in gain	at 13 MHz	-	-	3	dB
Between th	ne (RGB) _{1,2} inputs (pins 10, 11 and ⁻		utputs (pins 24,		
	decrease in gain	at 22 MHz	-	-	3	dB

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Sandcastl	e input (pin 14; control bit SC5; not	e 4)	I	ļ	ł	1
I ₁₄	input current	V ₁₄ < 0.5 V	_	_	-100	μA
C ₁₄₋₉	input capacitance		_	_	10	pF
V ₁₄	required voltage range					
	for horizontal and vertical					
	blanking pulses	SC5 = 0 or SC5 = 1	2.0	2.5	3.0	V
	for horizontal pulses (line count)	SC5 = 0	4.0	4.5	4.9	V
	for burst key pulses	SC5 = 0	6.1	_	V _P + 5.8	V
	for burst key pulses and line count	SC5 = 1	4.0	-	V _P + 5.8	V
Clamp puls	se delay		I		1	
	delay of leading edge of clamping	nominal sandcastle pulse				
	pulse	DELOF = 0	1.2	1.5	1.8	μs
		DELOF = 1	_	0	_	μs
Required n	ninimal burst gate pulse width			•		
	DELOF = 0	line frequency = 16 kHz	3	-	_	μs
	DELOF = 1	line frequency = 32 kHz	1.5	-	_	μs
Generatio	n of measurement lines and blank	king	•		1	•
pulse diagi Difference	o ultra black level occurs during time ram Fig.12) between ultra black level (VUB) and reference of white point adjust)	·				
dV/V _{nom}	dV = VCL - VUB	no clipping	25	35	45	%
-	urrent measuring time: rt after the end of vertical sandcastle	e (see pulse diagram)	·			
The vertica line pulses The line co The blankii	anking period and cut-off measurement al component will be identified if it co (H) in case of SC5 = 0 punter is triggered by the leading edgen ng time is valid for a vertical pulse de al blank pulse is OR gated with the s	ntains 2 or more burst key pul ge etected by the sandcastle dec	oder			
	me: full line period ent time: line period minus horizonta	al period (50/60 Hz)				
First line al First line al	ence of measuring lines: fter end of horizontal pulse which fol fter leakage pulse: red measuremen e after leakage pulse: green measur	t MR	e: leakage	e measu	rement LM	l

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Warm up t	est pulse during MT (see pulse diag	jram)			1	
Vwu	warm up level	$\label{eq:VWU} \begin{split} V_{WU} &= V_{PL} - 1 \ V; \\ V_{PL} &= \text{peak drive level} \\ (see also signal limiting); \\ given by I^2C-bus; \\ subaddress OA; no warm \\ up test pulse in case of \\ output clamping \\ (BCOF = 1) \end{split}$	-	_	-	_
	maximum warm up level	3F _{HEX}	5.6	6.0	6.3	V
Threshold	for Power On Reset (POR) during t	ime DG (see pulse diagram)	_			
V _{20,22,24}	output voltage to cause POR	RELC = 0	-	V _{PL}	-	V
POR		RELC = 1	-	V _{PL} + 1	-	V
Y output (pin 26; note 5)		-	1	4	1
V ₂₆	nominal signal amplitude (black-white; independent of gamma, adaptive black and contrast; peak-to-peak value)	control bit YEXH = 1; hue DAC (register 03) set > 28 _{HEX}	0.85	1.0	1.15	V
V ₂₆	black level	YEXH = 1				
		3F _{HEX}	-	4.0	-	V
		20 _{HEX}	-	2.0	-	V
	Y matrix coefficients	$Y = a_r R + a_g G + a_b B$				
	a _r		0.27	0.30	0.33	-
	a _g		0.53	0.59	0.65	-
	a _b		0.10	0.11	0.12	-
R ₂₆	differential output resistance		-	190	230	Ω
$\Delta \tau_{26}$	group delay time	between RGB outputs and Y output	20	25	30	ns
f _g	3 dB bandwidth		11	15	-	MHz
Automatic	cut-off control (pin 19; measuren	nent periods see beam info on pi	n 19)			
V ₁₉	permissible voltage (also during scanning period)		-	-	V _P – 1.4	V
V _{REF0}	internally controlled voltage on pin 19	during leakage measurement time LM	2.4	2.7	3.0	V
I ₁₉	maximum output current		-350	-	-250	μA
I ₁₉	maximum input current		250	_	350	μA
R ₁₉	input resistance for measurement input		1	-	-	MΩ
I ₁₉	additional input current	only during warm up	-	0.5	_	mA
V ₁₉	threshold of warm up detector (active in line MG)		4.3	4.5	4.7	V

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{MEAS}	difference between input voltage for cut-off and V_{REF0} ; adjustable via I ² C-bus (subaddress for reference: R: 07, G: 08 and B: 09)		-	-	-	-
	maximum V _{MEAS}	3F _{HEX}	1.5	1.6	1.7	V
	nominal V _{MEAS}	20 _{HEX}	0.9	1.0	1.1	V
	minimum V _{MEAS}	00 _{HEX}	0.4	0.45	0.5	V
Storage o	f cut-off control voltage / output c	lamping voltage (pins 25, 23 a	nd 21)			
I _{25,23,21}	input currents of storage inputs outside of the measurement time		_	-	0.1	μA
I _{25,23,21}	maximum charge / discharge current during measurement time		0.2	0.3	0.4	mA
	amplification from storage pins 25, 23 and 21 to outputs		_	1.7	-	-
Storage o	f leakage information (pin 17)				-	
I ₁₇	maximum charge / discharge current at time LM		300	400	-	μA
I ₁₇	discharge current	peak limiting during time MK active	-	4	-	mA
I ₁₇	leakage current	outside time LM	-	-	0.1	μA
V ₁₇	voltage to reset IC to switch on conditions	V ₁₇ is below	2.3	2.5	3.0	V
Signal lim	iting (The limitation acts on contras	t and at low contrast on brightne	ess)	*	•	•
Average b	eam current limiting (pin 15)					
V ₁₅	start of contrast reduction		-	4	-	V
dV ₁₅	input range for full contrast reduction		-	-2	-	V
V ₁₅	start of brightness reduction		-	2.5	-	V
dV ₁₅	input range for full brightness reduction		-	-1.6	_	V
I ₁₅	input current		_	-	-0.5	μA
The limitat	al limiting of output signals (pin 16) ion acts 1 H delayed vel adjustable by I ² C-bus (subaddres	ss OA; control bit RELC = 0)				
V _{24,22,20}	maximum limiting level	extrapolated from 2F	6.8	-	7.2	V
V _{24,22,20}	minimum limiting level	00 _{HEX}	-	2.3	3	V
I ₁₆	maximum discharge current at peak drive	RELC = 0	4	-	6	mA

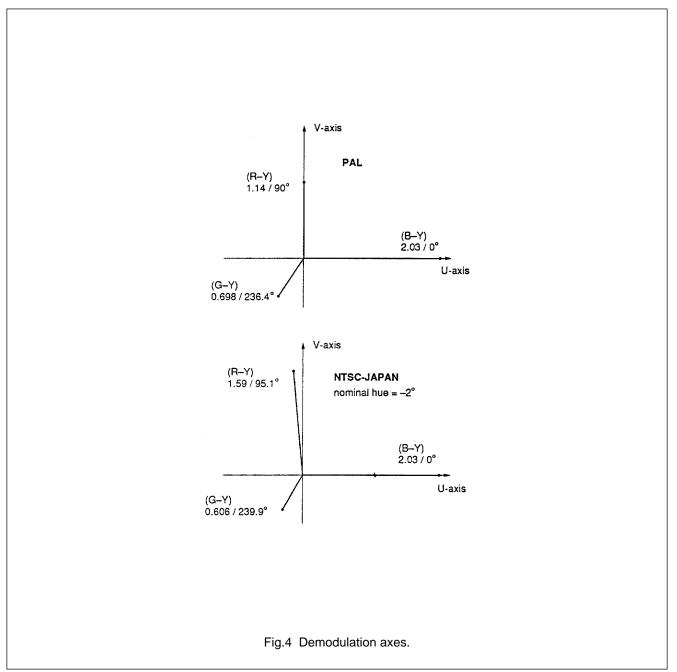
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Peak signa	al limiting (pin 16)		1	1		
Control bit	RELC = 1; Limiting Level (V_{LiL}) adju	stable by I ² C-bus (subaddress 0	DA)			
V _{LiL}		equal gain in white point adjust; signal only in one output channel				
	maximum limiting level	3F _{HEX}	3.3	3.5	3.9	V
	minimum limiting level	00 _{HEX}	1.3	1.5	1.7	V
	limiting starts, if the maximum of the asurement level MX = MR or MB or		adjustm	ient exce	eeds a thr	eshold
Discharge	currents					
The total d	ischarge current is a summation of I	$I_{16(1)} + I_{16(2)} + I_{16(3)}$				
Threshold	1 (TH1)					
I ₁₆₍₁₎	maximum discharge current	$TH1 = MX + V_{LiL}$; 1 line delayed and low-pass filtered	4.5	6	7.5	mA
	steepness		-	1.5	-	mA / 0.1 V
Low-pass	filter, control bit TCPL			!		!
t _{DPDL}	time constant low-pass filter	TCPL = 1 (at 1f _H); RELC = 1	0.9	1.2	1.5	μs
t _{DPDL}	time constant low-pass filter	TCPL = 0 (at 2f _H); RELC = 1	0.4	0.6	0.8	μs
Threshold	2 (TH2)			!		!
I ₁₆₍₂₎	maximum discharge current	$TH2 = MX + V_{LiL} \times 1.10; 1 \text{ line}$ delayed	4.5	6	7.5	mA
	steepness		-	1.5	-	mA / 0.1 V
Threshold	3 (TH3)					
I ₁₆₍₃₎	maximum discharge current	TH3 = MX + V_{LiL} ; undelayed	0.45	0.6	0.75	mA
	steepness		-	0.15	-	mA / 0.1 V
Charge cu	rrent					
I ₁₆	charge current		-0.5	-1	-2	μA
V ₁₆	start of contrast reduction		-	4	-	V
dV ₁₆	input range for full contrast reduction		-	-2	_	V
V ₁₆	start of brightness reduction		-	2.5	-	V
dV ₁₆	input range for full brightness reduction		-	-1.6	-	V
V ₁₆	maximum voltage by internal limitation		4.5	-	_	V
Hue adjus	t output (pin 26; note 6)	•				-
V ₂₆	minimum output voltage	YEXH = 0; 00 _{HEX}	0.5	_	1.0	V
V ₂₆	nominal output voltage	$YEXH = 0; 20_{HEX}$	3.0	3.2	3.4	V
V ₂₆	maximum output voltage	YEXH = 0; $3F_{HEX}$	4.8	_	5.5	V
I ₂₆	current of internal emitter follower		500	700	_	μA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I ² C-bus in	puts				1	
f ₂₈	clock frequency range		0	-	100	kHz
t _{SU;DAT}	data set-up		250	-	-	ns
t _H	clock pulse HIGH		4	-	-	μs
tL	clock pulse LOW		4.7	-	_	μs
t _r	rise time		-	-	1	μs
t _f	fall time		-	-	0.3	μs
Input leve	ls					
V ₂₇	LOW level input voltage		-	-	1.5	V
V ₂₈			_	-	1.5	V
V ₂₇	HIGH level input voltage		3.0	-	5.5	V
V ₂₈			3.0	-	5.5	V
I ₂₇	input current	V ₂₇ = 0.4 V	-10	-	_	μA
I ₂₈		V ₂₈ = 0.4 V	-10	-	-	μA
I ₂₇	input current	V ₂₇ = 0.9 V	-	-	10	μA
I ₂₈]	V ₂₈ = 0.9 V	-	-	10	μA
V ₂₇	LOW level output voltage		-	-	0.4	V
I ₂₇	output current	V ₂₇ = 0.4 V	3.0	-	-	mA

TDA4780

Notes to the characteristics

- 1. RGB signals controlled by saturation, adaptive black, contrast and brightness, gamma affects the Y component of the internal RGB signals.
- 2. Matrix coefficients should be tested by comparing RGB output signals with a reference RGB colour bar, which is fed in at $(RGB)_1$ or $(RGB)_2$ inputs. In case of NMEN = 1 (NTSC) at minimum saturation the Y output and RGB output signals are not identical to the Y input signal. PAL/SECAM signals are matrixed by the equation: $V_{G-Y} = -0.51V_{R-Y} - 0.19V_{B-Y}$


NTSC signals are matrixed by the equations (hue phase shift of -2 degrees):

 $V_{R-Y}^{*} = 1.39V_{R-Y} - 0.07V_{B-Y}; V_{G-Y}^{*} = -0.46V_{R-Y} - 0.15V_{B-Y}; V_{B-Y}^{*} = V_{B-Y}$

In the matrix equations: V_{R-Y} and V_{B-Y} are conventional PAL demodulation axes and amplitudes at the output of the demodulator. V_{R-Y}^* , V_{G-Y}^* and V_{B-Y}^* are the NTSC-modified colour-difference signals.

- 3. Adaptive black control acts on Y signal, which is either Y input or Y output from RGB matrix. Negative set-up is not affected. The level shift value is determined by the peak dark detector, operation selected by control bit ADBL. The peak dark detector is inactive during blanking. Peak dark detector activated by internal line counter, which starts after the end of the vertical blank of the sandcastle. Active from line 16 (after end of vertical sandcastle) to line 224 (NTSC mode, NMEN = 1) or line 272 (PAL mode, NMEN = 0). It is recommended to increase the contrast value (subaddress 02) by 15% if ADBL = 1. The line numbers are doubled if control bit HDTV = 1.
- 4. Sandcastle pulse detector (pin 14) The sandcastle pulse is compared with 3 (control bit SC5 = 0) or 2 (SC5 = 1) internal threshold levels to separate the various pulses; the internal pulses are generated while the input pulse is higher than the thresholds. The thresholds are independent of supply voltage and temperature.
- Y output can be switched to hue adjust output via I²C-bus control bit YEXH. Output without sync pulse. Recommendation: Hue adjust DAC set to 3F_{HEX}. Black level adjustable via hue adjust DAC.
- 6. Output can be switched to Y output via I²C-bus control bit YEXH (via I²C-bus, resolution 6 bit, bus subaddress 03).
- 7. At minimum gamma $(3F_{HEX})$ any differences in black level steps are amplified by 6 dB.
- 8. Series resistor in supply voltage should be less than 0.3 Ω .
- At 1.0 V cut-off measurement level the function of the cut-off control loop is not guaranteed because the blanking level is limited to the minimum output voltage. For proper working a guide number for the minimum cut-off measurement level is 1.3 V.

APPENDIX

₩ 0

RGB video processor with automatic cut-off control and gamma adjust

TDA4780

I ² C-BUS RECEIVER (pins 27 and 28)								
S: start condition P: stop condition W: write A: acknowledge								
slave address:	slave address:							
A6 A5 A4 A3 A2 A1 A0								
1	0	0	0	1	0	0		

receiver (write mode)

:

slave receiver format is (BREN = 0)

S	SLAVE ADDRESS A	SUBADDRESS A	DATA BYTE A		DATA BYTE A	Р
			n data bytes with auto-increment of subaddresses		of subaddresses	

All subaddresses within the range 00 to 0F are automatically incremented. The subaddress counter wraps around from 0F to 00. Only in this case 0F will be acknowledged too.

Subaddresses outside the range 00 to 0E are not acknowledged by the device and neither auto-increment nor any other internal operation takes place.

All eight bits of the subaddress have to be decoded by the device.

If BREN = 1 (control register 1) auto-increment is not possible, the slave receiver format is:

S, SLAVE ADDRESS A, SUB ADDRESS A, DATA BYTE A, P

TDA4780

RGB video processor with automatic cut-off control and gamma adjust

I²C-BUS CONTROLLED BITS ANALOG SELECTED SIGNALS SWITCH FSW2 FSW1 RGB₂ (pins 2, 3 RGB₁ (pins TV (pins ADBL FSDIS2 FSON1 FSDIS1 FSON2 (pin 1) (pin 13) and 4) 10, 11 and 12 6, 7 and 8) ON L L L L L L active ON L Н active Н ON off * L L L Н L active ON Н * ON off * * L L н L active ON * Н ON off * L L н L L active ON * н active ON * L L Н * active Н ON L Н Н * * * ON active * Н * * L L ON active Н ON off * * * * Н н ON active

 Table 1
 Signal input selection and effect on adaptive black measurements by fast source switches and I²C-bus.

Notes

1. H: logical HIGH or analog switch (pins 1 and 13) to $> \,$ 0.9 V

2. L: logical LOW or analog switch (pins 1 and 13) to < 0.4 V $\,$

3. *: H or L, no influence

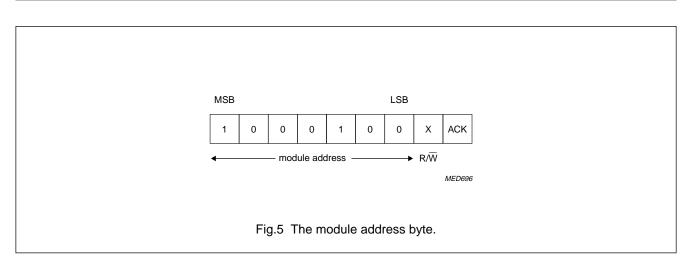
4. ON: is the selected signal input

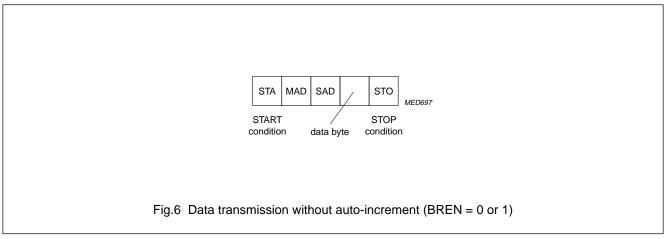
Table 2 Crosstalk

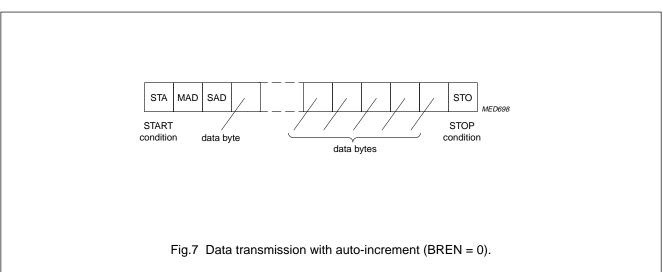
FSW1	FSW2	CROSSTALK	at 4 MHz maximum value (dB)	at 8 MHz maximum value (dB)	at 13 MHz maximum value (dB)
L	L	$RGB_1 \rightarrow Y, CD$	-58	-55	-50
		$RGB_2 \rightarrow Y, CD$	-58	-55	-50
L	Н	$Y, CD \rightarrow RGB_1$	-51	-50	-47
		$RGB_2 \rightarrow RGB_1$	-58	-55	-50
L	Н	$Y, CD \rightarrow RGB_2$	-51	-50	-47
		$RGB_1 \rightarrow RGB_2$	-58	-55	-50
Н	Н	$Y, CD \rightarrow RGB_2$	-51	-50	-47
		$RGB_1 \to RGB_2$	-58	-55	-50

FUNCTION SUBADDRESS DATA BYTE D7 D5 D4 D3 D2 D1 D0 D6 00 0 0 A05 A04 A03 A02 A01 A00 brightness 01 0 0 A15 A14 A13 A12 A11 saturation A10 02 0 0 A25 A24 A23 A22 A21 A20 contrast 0 03 0 A35 A34 A33 A32 A31 A30 hue A42 04 0 0 A45 A44 A43 A41 A40 red gain 05 0 0 A55 A54 A53 A52 A51 A50 green gain 0 0 A65 A63 A61 06 A64 A62 A60 blue gain 0 0 red level reference 07 A75 A74 A73 A72 A71 A70 08 0 0 A85 A84 A83 A82 A81 A80 green level reference 0 0 A95 A94 A93 A92 A91 09 A90 blue level reference 0A 0 0 AA5 AA4 AA3 AA1 AA0 peak drive limit AA2 0B 0 0 AB5 AB4 AB3 AB2 AB1 AB0 gamma control register 1 0C SC5 DELOF BREN Х NMEN Х Х Х 0D Х HDTV FSBL BCOF FSDIS2 FSON2 FSDIS1 FSON1 control register 2 0E MOD2 BLST RELC TCPL control register 3 ADBL YHI YEXH 0

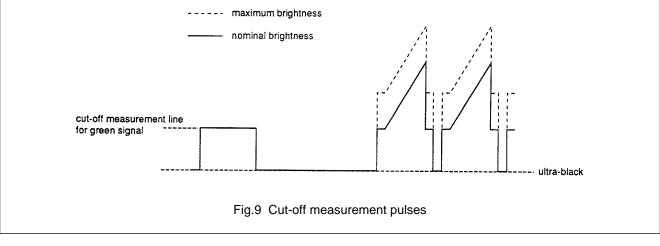
 Table 3
 Subaddress byte and data byte format.

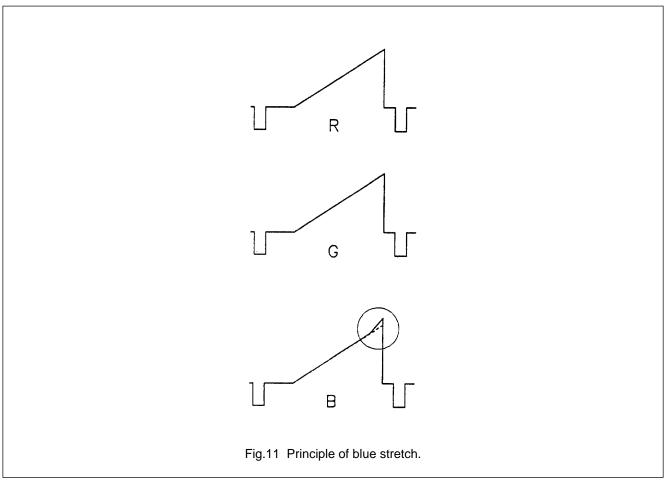

The least significant bit of an analog control alignment register is defined as AX0 (D0).

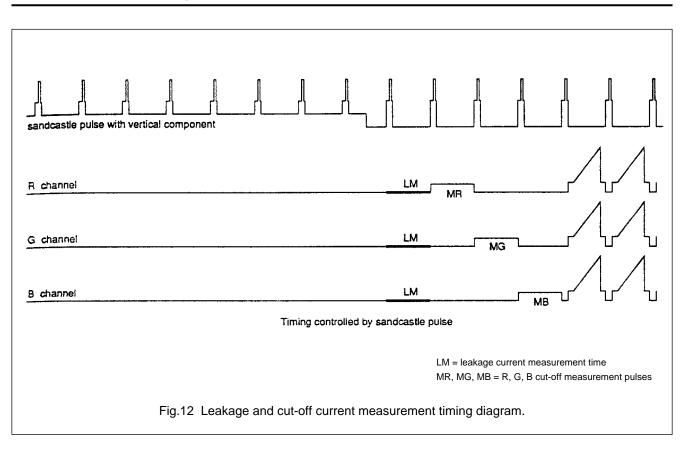

After power on reset (PONRES) all alignment registers are set to 01.


X means don't care but for software compatibility with further video ICs with the same slave address, it is recommended to set all X to 0.

SYMBOL PARAMETER CONDITIONS								
SYMBOL	PARAMETER	CONDITIONS						
Control re	gister 1							
SC5	sandcastle 5 V	0 = 3-level sandcastle pulse						
		1 = 2-level sandcastle pulse						
DELOF	delay of leading edge of	0 = delay						
	clamping pulse switched off	1 = no delay						
BREN	buffer register enable	0 = new data are executed just after reception						
		1 = data are hold in a latch (buffer register) and will be transferred to their destination register within the next vertical blanking interval; the device does not acknowledge any new data transfer until the internal transfer to the destination register has been completed						
NMEN	NTSC - matrix enable	0 = PAL matrix						
		1 = NTSC matrix						
Control re	gister 2							
HDTV	HDTV / progressive scan for	0 = 272 (PAL), 224 (NTSC) lines						
	ADBL line counter	1 = 544 (PAL), 448 (NTSC) lines						
FSBL	full screen black level, e.g. for 0 = normal mode							
	optical measurement	1 = cut-off measurement level during full field brightness, inactive						
BCOF	internal black level control off	0 = automatic cut-off control active						
		1 = RGB outputs clamped to fixed DC levels						
FSON2	fast switch 2 on	see Table 1						
FSDIS1	fast switch 1 disable							
FSDIS2	fast switch 2 disable							
FSON1	fast switch 1 on							
Control re	gister 3							
ADBL	adaptive black	0 = off						
		1 = on						
YHI	Y high level	$0 = input = 0.315 V_{(p-p)}$ (black-white)						
		$1 = input = 1.0 V(_{(p-p)} (black-white))$						
MOD2	modus 2	0 = inactive (BCOF = 0) AND (MOD2 = 1) is senseless; no output stabilization						
		1 = output clamp without brightness adjust, brightness remains active e.g. for blue stretch						
BLST	blue stretch	0 = off						
		1 = on						
YEXH	Y exclusive hue	0 = pin 26 is switched to hue adjust output						
		1 = pin 26 is switched to Y output						
RELC	relative to cut-off	0 = peak drive limit to absolute output						
		1 = peak drive limit relative to cut-off						
TCPL	time constant peak drive limiter	0 = 2 f _H						


 Table 4
 RGB processor mode bits control register.





TDA4780

RGB video processor with automatic cut-off control and gamma adjust

PIN **PIN NAME INTERNAL CIRCUIT** WAVE FORM Ζ NO. (DESCRIPTION) 🗅 0.1 mA 1 fast switch 2 colour bars 2 100 µA / OB R₂ input clamp 5 V black colour bars 3 G₂ input clamp 100 μA / OB 5 V black] CL colour bars 100 µA / OB 4 B₂ input clamp 5 V black

Table 5 internal circuitry (Abbreviations: OB: open base and CL: clamp pulse).

PIN **PIN NAME** WAVE FORM Ζ **INTERNAL CIRCUIT** NO. (DESCRIPTION) (5) ESD 広 protection 5 supply voltage v_p ⊕ ᢒ 6 -(B-Y) input clamp 100 µA / OB colour bors Лсг 4 V 7 -(R-Y) input clamp 100 µA / OB colour bors ∬c∟ 5 V 8 Y input clamp 100 μA / OB colour bors) 0.5 uA block] CL

PIN

NO.

9

10

11

RGB video processor with automatic cut-off control and gamma adjust

PIN NAME WAVE FORM Ζ **INTERNAL CIRCUIT** (DESCRIPTION) ৩ ground no ESD protection circuit for ground pin colour bars 10 R₁ input clamp 100 µA / OB 5 V black) 10] CL Γ colour bars 011 Au 6.0 G₁ input clamp 100 µA / OB 5 V black CL

				<u>ل</u>
12	B₁ input clamp	5 V black	100 μA / OB	CL IZ CL IZ CL_

PIN NO.	PIN NAME (DESCRIPTION)	WAVE FORM	Z	INTERNAL CIRCUIT
13	fast switch 1			C 22 mA C 22 mA C 13 C 13
14	sandcastle input	3-level sandcastle CL - 5.5 V H - 3.5 V V - 1.5 V 2-level sandcastle CL - 3.5 V H - 3.5 V L - 3.5 V	37 kΩ (SC5 = 0) OB (SC5 = 1)	50 μA 120 μA 1 kΩ 1 kΩ 14 kΩ 15 kΩ 1
15	average beam current limiting input		OB	30 µA 2 k0 15 ESD protection
16	storage capacitor for peak limiting input	outside peak drive during peak drive (RELC = 1) during peak drive (RELC = 0)	OB 0 to 12 mA 5 mA	O to 12 mA

PIN NO.	PIN NAME (DESCRIPTION)	WAVE FORM	Z	INTERNAL CIRCUIT
17	storage capacitor for leakage current	outside leakage current measurement during leakage current measurement	OB -400 μA to +400 μA	3.7 V
		automatic switch to power on reset	4 mA	
18	peak dark storage		OB / 0.26 mA	0.25 mA closed switch If peok dork detected 18 closed switch during 63 µA 2 µA ESD protection 18 18 18 18 18 18 18 18 18 18
19	cut-off measurement input (beam current information input)	3.7 V	–180 μA to +180 μA	Image: state

PIN NO.	PIN NAME (DESCRIPTION)	WAVE FORM	Z	INTERNAL CIRCUIT
20	blue output	Ist line BCOF = 0 Cd-off mecanemant brightness Dight vere block BCOF = 1 NOD2 = 0 brightness 2.5 V 2.5 V	5 mA 5 mA 5 mA	t ESD protection 20 20
21	blue cut-off storage capacitor	during cut-off control or during output clamping	OB -300 μA to +300 μA	DC 2.5 V 3 KQ 2) + ESD protection 2)

PIN NO.	PIN NAME (DESCRIPTION)	WAVE FORM	z	INTERNAL CIRCUIT
22	green output	Int line sectorial BCOF = 0 Dut-off measurement puse utre block BCOF = 1 NODZ = 0 brightness	5 mA	22 5 mA
			5 mA	+ ESD protection (22)
		9c0F = 1 NG02 = 1 2.3 V	5 mA	
			ОВ	
23	green cut-off storage capacitor	during cut-off control or during output clamping	–300 μA to +300 μA	DC 2.5 V 5 km 23 + ESD protection 23

PIN NO.	PIN NAME (DESCRIPTION)	WAVE FORM	z	INTERNAL CIRCUIT	
24	red output	BCOF = 0 ultre Wook BCOF = 0 ultre Wook BCOF = 1 MOD2 = 0 brightness 2.5 V	5 mA 5 mA	24) 5 mA	
		BC07 = 1 W002 = 1	5 mA	ESD protection 24	
25	red cut-off storage capacitor	during cut-off control or during output clamping	OB -300 μA to +300 μA	t	
26	Y output hue adjust output	YEXH = 1 (colour bars) YEXH = 0 DC 0.8 V to 5.0 V	0.7 mA 0.7 mA	0.7 mA	

PIN NO.	PIN NAME (DESCRIPTION)	WAVE FORM	z	INTERNAL CIRCUIT	
27	I ² C-bus data input	outside acknowledge	ОВ		
	acknowledge output	wledge output during acknowledge due to the test of test o		27 ESD protection	
28	I ² C-bus serial clock input		ОВ		

PACKAGE OUTLINE

DIP28: plastic dual in-line package; 28 leads (600 mil)

OUTLINE	REFERENCES			EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT117-1	051G05	MO-015AH				92-11-17 95-01-14

TDA4780

SOT117-1

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact

with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.